Left restriction monoids from left E-completions

نویسندگان

چکیده

Given a monoid S with E any non-empty subset of its idempotents, we present novel one-sided version idempotent completion call left E-completion. In general, the construction yields variant small category called constellation by Gould and Hollings. Under certain conditions, this is inductive, meaning that partial multiplication may be extended to give restriction semigroup, type unary semigroup whose operation models domain. We study properties those pairs S,E for which happens, characterise semigroups arise as such E-completions their submonoid elements having domain 1. As first applications, decompose functions on set X right total partitions respectively transformation TX X, binary relations under demonic composition E-completion left-total relations. many cases, including these three examples, embeds in Zappa-Szép product.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Left Adequate and Left Ehresmann Monoids Ii

This article is the second of two presenting a new approach to left adequate monoids. In the first, we introduced the notion of being T -proper, where T is a submonoid of a left adequate monoid M . We showed that the free left adequate monoid on a set X is X∗-proper. Further, any left adequate monoid M has an X∗-proper cover for some set X , that is, there is an X∗proper left adequate monoid M̂ ...

متن کامل

Left I-quotients of band of right cancellative monoids

Let $Q$ be an inverse semigroup. A subsemigroup $S$ of $Q$ is a left I-order in $Q$ and $Q$ is a semigroup of left I-quotients of $S$ if every element $qin Q$ can be written as $q=a^{-1}b$ for some $a,bin S$. If we insist on $a$ and $b$ being $er$-related in $Q$, then we say that $S$ is straight in $Q$. We characterize semigroups which are left I-quotients of left regular bands of right cancell...

متن کامل

Structure of Left Adequate and Left Ehresmann Monoids

This is the first of two articles studying the structure of left adequate and, more generally, of left Ehresmann monoids. Motivated by a careful analysis of normal forms, we introduce here a concept of proper for a left adequate monoid M . In fact, our notion is that of T -proper, where T is a submonoid of M . We show that any left adequate monoid M has an X∗proper cover for some set X , that i...

متن کامل

On Recognizable Languages in Left Divisibility Monoids

We describe a class of monoids where c-rational languages can be deened analogously to trace theory and where these languages are precisely the recognizable ones. The proofs rely on Ramsey's theorem, distributive lattice theory and on Hashigushi's rank function generalized to our left divisibility monoids. We obtain Ochma nski's theorem on recognizable languages in free partially commutative mo...

متن کامل

Left derivable or Jordan left derivable mappings on Banach algebras

‎Let $mathcal{A}$ be a unital Banach algebra‎, ‎$mathcal{M}$ be a left $mathcal{A}$-module‎, ‎and $W$ in $mathcal{Z}(mathcal{A})$ be a left separating point of $mathcal{M}$‎. ‎We show that if $mathcal{M}$ is a unital left $mathcal{A}$-module and $delta$ is a linear mapping from $mathcal{A}$ into $mathcal{M}$‎, ‎then the following four conditions are equivalent‎: ‎(i) $delta$ is a Jordan left de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2022

ISSN: ['1090-266X', '0021-8693']

DOI: https://doi.org/10.1016/j.jalgebra.2022.04.038